最近随着微信版本的更新,在进入界面有个跳一跳的小游戏,本文旨在总结,如何从“全白状态”,一步步靠近并完成跳一跳作弊器。

写在前面

Android 系统手机:需在电脑上提前下载 Android adb 工具包 百度百科

adb的全称为Android Debug Bridge,就是起到调试桥的作用,作为一名开发者倒是常用到这个工具.借助adb工具,我们可以管理设备或手机模拟器的状态。还可以进行很多手机操作,如安装软件、卸载软件、系统升级、运行shell命令等等。adb就是连接Android手机与PC端的桥梁,可以让用户在电脑上对手机进行全面的操作。

IOS 系统手机

Python 版本

首先:安装 Python 详见这里:《Python入门之Python简介》按步骤安装完pip即可。

测试安装是否成功:打开cmd,输入 python,会出现python版本号等一系列,自行判断即可

自动版

新建python文件 jump.py ,写入一下代码

# coding=utf-8

import os
import sys
import subprocess
import time
import math
from PIL import Image
import random
from six.moves import input
try:
    from common import debug, config
except ImportError:
    print('请在项目根目录中运行脚本')
    exit(-1)

'''
# === 思路 ===
# 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
#      根据两个点的距离乘以一个时间系数获得长按的时间
# 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,
#      比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,
#      求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标
# 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,
#      方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,
#      这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,
#      根据一个通过截图获取的固定的角度来推出中点的 Y 坐标
# 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)
'''

# VERSION = "1.1.1"

debug_switch = False    # debug 开关,需要调试的时候请改为:True
config = config.open_accordant_config()

# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置,设置保存在 config 文件夹中
under_game_score_y = config['under_game_score_y']
press_coefficient = config['press_coefficient']       # 长按的时间系数,请自己根据实际情况调节
piece_base_height_1_2 = config['piece_base_height_1_2']   # 二分之一的棋子底座高度,可能要调节
piece_body_width = config['piece_body_width']             # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节

screenshot_way = 2

def pull_screenshot():
    '''
    新的方法请根据效率及适用性由高到低排序
    '''
    global screenshot_way
    if screenshot_way == 2 or screenshot_way == 1:
        process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
        screenshot = process.stdout.read()
        if screenshot_way == 2:
            binary_screenshot = screenshot.replace(b'\r\n', b'\n')
        else:
            binary_screenshot = screenshot.replace(b'\r\r\n', b'\n')
        f = open('autojump.png', 'wb')
        f.write(binary_screenshot)
        f.close()
    elif screenshot_way == 0:
        os.system('adb shell screencap -p /sdcard/autojump.png')
        os.system('adb pull /sdcard/autojump.png .')

def set_button_position(im):
    '''
    将 swipe 设置为 `再来一局` 按钮的位置
    '''
    global swipe_x1, swipe_y1, swipe_x2, swipe_y2
    w, h = im.size
    left = int(w / 2)
    top = int(1584 * (h / 1920.0))
    left = int(random.uniform(left-50, left+50))
    top = int(random.uniform(top-10, top+10))    # 随机防 ban
    swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top

def jump(distance):
    '''
    跳跃一定的距离
    '''
    press_time = distance * press_coefficient
    press_time = max(press_time, 200)   # 设置 200ms 是最小的按压时间
    press_time = int(press_time)
    cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
        x1=swipe_x1,
        y1=swipe_y1,
        x2=swipe_x2,
        y2=swipe_y2,
        duration=press_time
    )
    print(cmd)
    os.system(cmd)
    return press_time

def find_piece_and_board(im):
    '''
    寻找关键坐标
    '''
    w, h = im.size

    piece_x_sum = 0
    piece_x_c = 0
    piece_y_max = 0
    board_x = 0
    board_y = 0
    scan_x_border = int(w / 8)  # 扫描棋子时的左右边界
    scan_start_y = 0  # 扫描的起始 y 坐标
    im_pixel = im.load()
    # 以 50px 步长,尝试探测 scan_start_y
    for i in range(int(h / 3), int(h*2 / 3), 50):
        last_pixel = im_pixel[0, i]
        for j in range(1, w):
            pixel = im_pixel[j, i]
            # 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环
            if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
                scan_start_y = i - 50
                break
        if scan_start_y:
            break
    print('scan_start_y: {}'.format(scan_start_y))

    # 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3
    for i in range(scan_start_y, int(h * 2 / 3)):
        for j in range(scan_x_border, w - scan_x_border):  # 横坐标方面也减少了一部分扫描开销
            pixel = im_pixel[j, i]
            # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
            if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
                piece_x_sum += j
                piece_x_c += 1
                piece_y_max = max(i, piece_y_max)

    if not all((piece_x_sum, piece_x_c)):
        return 0, 0, 0, 0
    piece_x = int(piece_x_sum / piece_x_c)
    piece_y = piece_y_max - piece_base_height_1_2  # 上移棋子底盘高度的一半

    # 限制棋盘扫描的横坐标,避免音符 bug
    if piece_x < w/2:
        board_x_start = piece_x
        board_x_end = w
    else:
        board_x_start = 0
        board_x_end = piece_x

    for i in range(int(h / 3), int(h * 2 / 3)):
        last_pixel = im_pixel[0, i]
        if board_x or board_y:
            break
        board_x_sum = 0
        board_x_c = 0

        for j in range(int(board_x_start), int(board_x_end)):
            pixel = im_pixel[j, i]
            # 修掉脑袋比下一个小格子还高的情况的 bug
            if abs(j - piece_x) < piece_body_width:
                continue

            # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
            if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
                board_x_sum += j
                board_x_c += 1
        if board_x_sum:
            board_x = board_x_sum / board_x_c
    last_pixel = im_pixel[board_x, i]

    # 从上顶点往下 +274 的位置开始向上找颜色与上顶点一样的点,为下顶点
    # 该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误
    for k in range(i+274, i, -1): # 274 取开局时最大的方块的上下顶点距离
        pixel = im_pixel[board_x, k]
        if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10:
            break
    board_y = int((i+k) / 2)

    # 如果上一跳命中中间,则下个目标中心会出现 r245 g245 b245 的点,利用这个属性弥补上一段代码可能存在的判断错误
    # 若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低
    for l in range(i, i+200):
        pixel = im_pixel[board_x, l]
        if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:
            board_y = l+10
            break

    if not all((board_x, board_y)):
        return 0, 0, 0, 0

    return piece_x, piece_y, board_x, board_y

def check_screenshot():
    '''
    检查获取截图的方式
    '''
    global screenshot_way
    if os.path.isfile('autojump.png'):
        os.remove('autojump.png')
    if (screenshot_way < 0):
        print('暂不支持当前设备')
        sys.exit()
    pull_screenshot()
    try:
        Image.open('./autojump.png').load()
        print('采用方式 {} 获取截图'.format(screenshot_way))
    except Exception:
        screenshot_way -= 1
        check_screenshot()

def yes_or_no(prompt, true_value='y', false_value='n', default=True):
    default_value = true_value if default else false_value
    prompt = '%s %s/%s [%s]: ' % (prompt, true_value, false_value, default_value)
    i = input(prompt)
    if not i:
        return default
    while True:
        if i == true_value:
            return True
        elif i == false_value:
            return False
        prompt = 'Please input %s or %s: ' % (true_value, false_value)
        i = input(prompt)

def main():
    '''
    主函数
    '''
    op = yes_or_no('请确保手机打开了 ADB 并连接了电脑,然后打开跳一跳并【开始游戏】后再用本程序,确定开始?')
    if not op:
        print('bye')
        return
    # print('程序版本号:{}'.format(VERSION))
    debug.dump_device_info()
    check_screenshot()

    i, next_rest, next_rest_time = 0, random.randrange(3, 10), random.randrange(5, 10)
    while True:
        pull_screenshot()
        im = Image.open('./autojump.png')
        # 获取棋子和 board 的位置
        piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
        ts = int(time.time())
        print(ts, piece_x, piece_y, board_x, board_y)
        set_button_position(im)
        jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
        if debug_switch:
            debug.save_debug_screenshot(ts, im, piece_x, piece_y, board_x, board_y)
            debug.backup_screenshot(ts)
        i += 1
        if i == next_rest:
            print('已经连续打了 {} 下,休息 {}s'.format(i, next_rest_time))
            for j in range(next_rest_time):
                sys.stdout.write('\r程序将在 {}s 后继续'.format(next_rest_time - j))
                sys.stdout.flush()
                time.sleep(1)
            print('\n继续')
            i, next_rest, next_rest_time = 0, random.randrange(30, 100), random.randrange(10, 60)
        time.sleep(random.uniform(0.9, 1.2))   # 为了保证截图的时候应落稳了,多延迟一会儿,随机值防 ban

if __name__ == '__main__':
    main()

用adb连接手机

  • 通过usb

把手机通过usb接上pc,打开手机USB调试,传输模式选MTP。
可通过cmd打开adb.exe所在目录输入 adb devices 查看是否有设备已连接。
如果adb并没有连接上手机,于是下载了android驱动程序(驱动精灵等软件就能下载),安装了, 就好了。

  • 通过wifi

adb connect 192.168.1.100
其中192.168.1.100为手机的ip(需要在手机信息里面查找),如果连接成功, 就可以进入android的shell了。

打开微信跳一跳,点击开始游戏

用cmd打开至jump.py所在目录,输入 python jump.py 运行jump.py

附:运行时可能会出现 ImportError: No module named FIL 错误,缺少FIL模块,pip install FIL 即可

手动版

工具介绍

  • Python 2.7
  • Android 手机
  • Adb 驱动
  • Python Matplot绘图

1. 安装 matslpotlib

pip insatll matsloptlib

官网下载 安装包:matplotlib-2.1.1-cp27-cp27m-win_amd64.whl (27,是你的Python版本对应的,如果你是3.6版本,则为36)

下载的可能会有一些慢,注意安装过程需要FQ,实在不行就安装离线版本,参考 在这里FQ

2. 安装 Pillow

由于运行完前面几步,还会出错,出现 "ImportError:No module named PIL" 。

由 资料 可知需要安装Pillow。

pip install Pillow

3. 代码下载

下载解压即可。

4. 用adb连接手机

5. 手机打开微信小程序,进入跳一跳。

在cmd中用cd命令切换到之前下载的源代码的目录

然后运行代码

python wechat_jump_auto.py

提示:(别搞太高分,适可而止,小心被封号就尴尬了...

我学院网